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Abstract: We explain particular, unique, approximate solutions of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations and also 
solutions of DGLAP evolution equations by using regge behaviour of structure functions and method of characteristic for t and x-evolutions of singlet 
and non-singlet structure functions in leading order (LO) and next-to-leading order (NLO).  Hence t-evolution of deuteron, proton, neutron and 
difference of proton and neutron and x-evolution of deuteron, proton and neutron structure functions in LO and NLO at low-x from DGLAP evolution 
equations. The results of t and x-evolutions are compared with experimental data and global parameterization in different kinematics region. We also 
compare the solutions of DGLAP evolution equations among themselves.  
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1. Introduction  
            Among different evolution equations, up till now 
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [1-4] 
evolution equations are most successful and major tools to 
study the structure functions of hadrons and ultimately 
structure of matter, ultrahigh-energy cosmic rays. Various 
methods, like particular, unique, approximate, 
characteristic, regge and brute-force, Laguerre-polynomial, 
Mellin-transformation etc. methods have been developed 
for the analytical and numerical solution. In this paper, we 
are concentrate our work mainly in different analytical 
solutions of DGLAP evolution equations in leading order 
(LO), next-to-leading order (NLO) and compare them 
particularly by focusing on the numerical accuracy, 
approximation and better fitness of results with 
experimental data and global parameterization in different 
kinematics region.  
     Here, we explain particular, unique, approximate 
solutions of the DGLAP evolution equations and also 
solutions of DGLAP evolution equations by using regge 
behaviour of structure functions and method of 
characteristic for t and x-evolutions of singlet and non-
singlet structure functions in leading order (LO) and next-
to-leading order (NLO).  Hence t-evolution of deuteron, 
proton, neutron, difference of proton and neutron and x-
evolution of deuteron and proton structure functions in LO  
and NLO at low-x from DGLAP evolution equations. The 
results of t and x-evolutions are compared with 
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experimental data in different kinematics region. We also 
compare the solutions of DGLAP evolution equations 
among themselves.   
  
2. Theory 
           Though the necessary theory has been discussed 
elsewhere [5-13], here we mention some essential steps for 
clarity. The DGLAP evolution equations with splitting 
functions [14-16] for singlet and non-singlet structure 
functions in LO and NLO are in the standard forms [5-13, 
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where, Pqg(w) = w2+(1-w)2, CA, CG, CF, and TR are constants 
associated with the color SU(3) group and CA = CG = NC = 3,   
CF = (NC2-1)/ 2NC   and   TR = 1/ 2. NC  is the number of 
colours. 
 
          Using the variable u = 1-w and Taylor expansion 
method [18-19], singlet structure function F2S(x/w, t) and 
gluon structure function G(x/w, t) can be approximated for 
small-x as 
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Using equations (5) and (6) in equation (1) and performing 
u-integrations we get 
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Where, A1(x), A2(x), A3(x) and A4(x) are some functions of x 
[5]. 
We assume [5-13]         
 G(x, t) = K(x) F2S(x, t).                                                               (8) 
 where K(x) is a parameter to be determined from 
phenomenological analysis and we assume K(x) = K, axb or 
ce dx where K, a, b, c and d are constants. Though we have 
assumed some simple standard functional forms of K(x), 
yet we can not rule out the other possibilities. 
Therefore equations (7) becomes 
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The general solutions [19-20] of equation (9) are   
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2. (a) Complete and Particular Solutions 
         Since U and V are two independent solutions of 
equation (9) and if α and β are arbitrary constants, then V = 
αU + β may be taken as a complete solution [19-20] of 
equation (9). So, the complete solution 
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is a two-parameter family of surfaces. The one parameter 
family determined by taking β = α2 has equation 
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Differentiating equation (11) with respect to α, we get 

.
)(2

11exp
2
1














∫−= dx

xLfA
tα   

Putting the value of α in equation (11), we get 

 
,

)(2

)(1
)(2

2exp2
4
1),(2
















∫














−−= dx

xL

xL

xLfAttxSF
                         (12)  

which is merely a particular solution of the general 
solution. Now, defining 
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where, t0 = ln (Q02/Λ2) at any lower value Q = Q0, we get 
from equation (12)                                                      
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which gives the t-evolution of singlet structure function 
F2S(x, t). Again defining,                                         
we obtain from equation (12) 
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which gives the x-evolution of singlet structure function 
F2S(x, t). Proceeding in the same way, we get 
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which give the t-evolutions of non-singlet structure 
functions in LO. And also 
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which give the x-evolutions of non-singlet structure 
functions in LO. Here,  
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   Proceeding exactly in the same way, from equations (3) 
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which gives the t and x-evolution of singlet and non-singlet 
structure functions in NLO where a = 2/βo, b = β1/β02. We 
observe that in case of t-evolutions, if b tends to zero, then 
equation (17) tends to equation (13) and (14) respectively, 
i.e., solution of NLO equations goes to that of LO equations. 
Physically b tends to zero means number of flavours is 
high. Here, ),(1 xM ),(2 xM ),(1 xB )(2 xB )(3 xB   and )(4 xB  are 

some functions of x [5-7]. 
        For all these particular solutions, taking β = α2. But if 
using β = α and differentiating with respect to α as before, 
the value of α can not be determined. In general, if taking β 
= αy, in the solutions the powers of (t/t0) and the numerators 
of the first term inside the integral sign be y/(y-1) for t and 
x-evolutions respectively in LO. Similarly the powers of 

1
0

1 0++ t/bt/b tt and co-efficient of b (1/t-1/to) of 
exponential part in t-evolutions and the numerators of the 
first term inside the integral sign be y/(y-1) for x-evolutions 
in NLO. Then if y varies from minimum (=2) to maximum 
(= ∞) then y/(y-1) varies from 2 to 1. 
        Deuteron, proton and neutron structure functions [21] 
can be written as 
F2d(x, t) = (5/9) F2S(x, t),                                                            
(20) 
F2p(x, t) = (5/18) F2S(x, t) + (3/ 18) F2NS (x, t),                          
(21) 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013                                                             1353 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org 

F2n(x, t) = (5/18) F2S(x, t) – (3/ 18) F2NS (x, t).                          
(22)                              
Now using equations (13), (15) in equations (20-22) and (14) 
in equation (20) one obtains the t-evolutions of deuteron, 
proton, neutron and difference of proton and neutron and 
x-evolution of deuteron structure functions at low-x as 
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in LO for β = α2. The corresponding results in NLO [6-7] for 
β = α2 are 
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The determination of x-evolutions of proton and neutron 
structure functions like that of deuteron structure function 
is not suitable by this methodology; because to extract the 
x-evolution of proton and neutron structure functions, we 
are to put equations (14) and (16) in equations (21) and (22). 
But as the functions inside the integral sign of equations 
(14) and (16) are different, two separate the input functions 
F2S(x0, t) and F2NS(x0, t) are needed from the data points to 
extract the x-evolutions of the proton and neutron structure 
functions, which may contain large errors.  
 
2. (b) Unique Solutions 
           Due to conservation of the electromagnetic current, 
F2 
 must vanish as Q2 goes to zero [21-22]. Since the value of Λ 
is so small we can take at Q = Λ, F2S(x, t) = 0 due to 
conservation of the electromagnetic current [22]. This 
dynamical prediction agrees with most adhoc 
parameterizations and with the data [23]. Using this 
boundary condition in equation (10) we get β = 0 and   
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where t0 = ln (Q02/Λ2) at any lower value Q = Q0, we get 
from equations (29)     
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which gives the t-evolutions of singlet structure function 
F2S(x, t)  in LO. Proceeding in the same way we get 
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which gives the x-evolutions of singlet structure function 
F2S(x, t)  in LO. Similarly, for non-singlet structure functions  
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which give the t and x-evolutions of non-singlet structure 
functions in LO and      
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which give the t and x-evolutions of singlet and non-singlet 
structure functions in NLO.  
       Therefore corresponding results for t-evolution of 
deuteron, proton, neutron and difference of proton and 
neutron structure functions are  
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in NLO. Again x-evolution of deuteron structure function 
in LO and NLO respectively are 

,

0
)(2

)(1
)(2

1exp),(2),(2 0

















∫













−= dx

x

x xL

xL

xLfA
txdFtxdF           (41) 

.
0 )(20)(2

)(10)(1
)(20)(2

1.1exp),), 0(2(2 dx
x

x xMTxL

xMTxL

xMTxLa
txFtxF dd ∫













+

+
−

+
=                                                

                                                                                                  (42) 
Already we have mentioned that the determination of x-
evolutions of proton and neutron structure functions like 
that of deuteron structure function is not suitable by this 
methodology. It is to be noted that unique solutions of 
evolution equations of different structure functions are 
same with particular solutions for maximum y (y = ∞) in β = 
αy relation.  
 
2. (c) Approximate Solutions 
 It is to be noted that approximate solution of DGLAP 
evolution equation is obtained by considering αU + βV = 0 
instead of V = αU + β in equation (10) and the results [9-12] 
are same with the result of unique solutions. 
 
2.(d) Regge behaviour 
Using the Regge behaviour of singlet and non-singlet 
structure functions [12-13] as  
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 where T1(t) and T2(t) are functions of t, and λS and λNS  are 
the Regge intercepts for singlet and non-singlet structure 
functions respectively. 
Using Regge behaviour of structure function and the 
relation between gluon and singlet structure function 
(equation (8)) in equation (1) one obtains the following 
form of equation 
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        From equation (46), the t and x-evolutions of singlet 
structure function in LO can be obtained as 
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    Proceeding in the same way, t and x-evolutions of non-
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where, )(2 xR  is a some function of x [13]. 

      The t and x-evolution of singlet and non-singlet 
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where,  )(3 xR  and )(4 xR are some functions of x [13].  

        Now using equations (47), (49) and (48), (50) in 
equations (20), (21) and (22), the t and x-evolutions of 
deuteron, proton and neutron structure functions at low-x 
can be obtained as 
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in LO. The corresponding results in NLO are  
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     It is to be noted that Taylor series expansion method can 
not be used to solve DGLAP evolution equations in regge 
behaviour of structure functions. Since in regge behavior, 
region of discussion is at very low-x, so boundary condition 
F2(x, t) at x =1 also can not be used. 
 
2. (e) Characteristic method      
      For method of characteristics, two new variables S and τ 
used instead of x and t [8] in equation (10), such that 

t
dS
dt

−= ,                                                                                     (67)      

)(2 xLA
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f=                                                                           (68) 

Therefore equation (10) can be written as   

0)()()(
21

2 =+ S,τFS,τL
dS

S,τdF S
S

.                                          (69)  

Solution of equation (69) is             
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where L1(S, τ) = A f .L1(x) and F2S(S, τ) = F2S (τ); S = 0, t = t0. 
After changing the variable (S and τ) to the original 
variable (x and t), the t and x-evolution of singlet structure 
function in LO [8] can be obtained as  
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Proceeding in the same way, t and x evolutions of non-
singlet structure function can be obtained as 
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Now using equations (71) and (72) in equations (20),  t and 
x-evolution of deuteron structure functions in LO can be 
obtained as 
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The corresponding results in NLO are   












+














=

)(10)(12
3

0
)0,(2),(2

xMTxLfA

t
ttxdFtxdF ,         (77) 

















∫
+

+
−=

x

x
dx

xMTxL

xMTxL
txdFtxdF

0
)(20)(

)(10)(
exp),(2),(2

2

1

0
,         (78)    

Since the equation (71) and (73) as well as (72) and (74) are 
not in the same form, so two separate the input functions 
F2S(x0, t) and F2NS(x0, t) are needed from the data points to 
extract the t and x-evolution of proton and neutron 
structure function. So using equations (21) and (22), 
determination of evolutions of proton and neutron 
structure functions is not possible. In all the methods, for 
possible solutions in NLO, an extra assumption [7, 11] 

102
)(

0

2

2
)(

TT
tsT
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π
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π

α  is to be introduced, where T0 is 

a numerical parameter and 






=
π
tsαT

2
)(

1
. By a suitable choice 

of T0 we can reduce the error to a minimum. 
 
3. (a) Results and Discussion for Particular, unique and 
Approximate solutions 
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  Fig.1 (a-d):  Results of t-evolutions of deuteron, proton, 
neutron and difference of proton and neutron structure 
functions (dashed lines for LO and solid lines for NLO) for 
the representative values of x in LO and NLO for NMC 
data. For convenience, value of each data point is increased 
by adding 0.2i, where i = 0, 1, 2, 3 ... are the numberings of 
curves counting from the bottom of the lowermost curve as 
the 0-th order. Data points at lowest-Q2 values in the figures 
are taken as input. 
              
           Results of particular solutions [5-7] of t-evolution of 
deuteron, proton, neutron and difference of proton and 
neutron structure functions compared with the NMC [25] 
and HERA [26] low-x and low-Q2 data and results of x- 
evolution of deuteron structure functions with NMC low-x 
and low-Q2 data. In case of HERA data, proton and neutron 
structure functions are measured in the range 2 ≤ Q2 ≤ 50 
GeV2. Moreover, here PT ≤ 200 MeV, where PT is the 
transverse momentum of the final state baryon. In case of 
NMC data, proton and neutron structure functions are 
measured in the range 0.75 ≤ Q2 ≤ 27 GeV2. We consider 
number of flavours nf = 4.  
         In fig.1(a-d), represents results of t-evolutions of 
deuteron, proton, neutron and difference of proton and 
neutron structure functions (solid lines) for the 
representative values of x given in the figures for y = 2 
(upper solid lines) and y maximum (lower solid lines) in β = 

αy relation in NLO. Data points at lowest-Q2 values in the 
figures are taken as input to test the evolution equation.  
 

 
Fig.2: Results of t-evolutions of proton structure functions 
F2p (dashed lines for LO and solid lines for NLO) with 
recent global paramatrization (long dashed lines) for the 
representative values of x given in the figures. Data points 
at lowest-Q2 values in the figures are taken as input. For 
convenience, value of each data point is increased by 
adding 0.5i, where i = 0, 1, 2, 3, ... are the numberings of 
curves counting from the bottom of the lowermost curve as 
the 0- th order. 
 
         Agreement with the data [25-26] is good. The same 
figures, represents the results of t-evolutions of deuteron, 
proton, neutron and difference of proton and neutron 
structure functions (dashed lines) for the particular 
solutions in LO. Here, upper dashed lines for y = 2 and 
lower dashed lines for y maximum in β = αy relation. We 
observe that t-evolutions are slightly steeper in LO 
calculations than those  
of NLO. But differences in results for proton and neutron 
structure functions are smaller and NLO results for y = 2 are 
of better agreement with experimental data in general. 
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 Fig.3: T(t)2 and T0T(t), where T(t) = αs(t)/2π against Q2 in 
the Q2 range 0 ≤  Q2 ≤  50 GeV2.   
 
 
In fig.2, we compare our results of t-evolutions of proton 
structure functions F2p (solid lines) with recent global 
parameterization [27] (long dashed lines) for the 
representative values of x given in the figures for y = 2 
(upper solid lines) and y maximum (lower solid lines) in β = 
αy relation in NLO. Data points at lowest-Q2 values in the 
figures are taken as input to test the evolution equation. In 
the same figure, we also plot the results of t-evolutions of 
proton structure functions F2p (dashed lines) for the 
particular solutions in LO. Here, upper dashed lines for y = 
2 and lower dashed lines for y maximum in β = αy relation.  
We observe that t-evolutions are slightly steeper in LO 
calculations than those of NLO. Agreement with the NLO 
results is found to be better than with the LO results. 
          Unique and approximate solutions of t-evolution for 
structure functions are same with particular solutions for y 
maximum (y = ∞) in β = αy relation in LO and NLO.  
          In fig.3, we plot T(t)2 and T0T(t), where T(t) = αs(t)/2π 
against Q2 in the Q2 range 0 ≤ Q2≤ 50 GeV2 as  required by 
our data used. Though the explicit value of T0 is not 
necessary in calculating t- evolution of, yet we observe that 
for T0 = 0.108, errors become minimum in the Q2 range 0 ≤ 
Q2≤ 50 GeV2. 
 

 
     Fig. 4(a-b): Results of x-distribution of deuteron 
structure functions F2d in LO for K(x) = k (constant) (solid 
lines), K(x) = axb (dashed lines) and for K(x) = ce- dx  (dotted 
lines), where k = 4.5, a = 4.5, b = 0.01, c = 5, b = 1 and in NLO 
for  K(x) = axb  (solid lines), and for K(x) = ce- dx  (dotted 
lines), where a = 5.5, b = 0.016,  c = 0.28,  and d = -3.8 and for 
representative values of Q2 given in each figure, and 
compare them with NMC deuteron low-x low-Q2  data. In 
each the data point for x-value just below 0. 1 has been 
taken as input F2d (x0, t). For convenience, value of each 
data point is increased by adding 0.2i, where i = 0, 1, 2, 3, ... 
are the numberings of curves counting from the bottom of 
the lowermost curve as the 0-th order. 
 
     In figs.4 (a-b), represents results of x-distribution of 
deuteron structure functions F2d in LO (fig. 4(a)) for  K(x) = k 
(constant) (solid lines), K(x) = axb (dashed lines) and for K(x) 
= ce-dx  (dotted lines), and in NLO (fig.4(b)) for K(x) = axb 
(solid lines) and for K(x) = ce-dx (dashed lines) where a, b, c 
and d are constants and for representative values of Q2 
given in each figure , and compare them with NMC 
deuteron low-x low-Q2  data [25]. In each data point for x-
value just below 0.1 has been taken as input F2d (x  0, t). In 
case of LO, agreement of the results with experimental data 
is good at k = 4.5, a= 4.5, b = 0.01, c = 5, d = 1. For x-
evolutions of deuteron structure function, results of unique 
solutions and results of particular solutions have not any 
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significance difference in LO [6]. In case of NLO, agreement 
of the result with experimental data is found to be excellent 
at a =10, b = 0.016, c = 0.5, d =-3.8 for y minimum (y = 2) and a 
=5.5, b = 0.016, c = 0.28, d =-3.8 for y maximum (y = ∞) in 
relation β=αy.  But agreement of the results with 
experimental data is found to be very poor for any constant 
value of k. Therefore we do not present our result at K(x) = k 
in NLO.  
                             
3. (b) Results and Discussion for Regge behavior 
           Though the results of regge behavior has been 
discussed elsewhere [13], here we mention some important 
point. 
              Nature of results of t and x- evolution of structure 
functions is same with the results of particular solutions 
and agreement of the result with experimental data and 
global parameterization is good. In all the result from 
experimental as well as global fits, it is seen that structure 
functions increases when x decreases and Q2 increases for 
fixed values of Q2 and x respectively.  But the results of t 
and x- evolution of structure functions are not unique 
which depend on various parameters K(x), λS, λNS in LO 
and K(x), λS, λNS and T0 in NLO.  
    K(x) comes from the relation between gluon and singlet 
structure function, which is a function of x. Here also taking 
some simple standard functional forms of K(x) which are 
same with the particular solutions i.e., K(x)= k, axb, and cedx.  
Explicit form of K(x) can actually be obtained only by 
solving coupled DGLAP evolution equations for singlet 
and gluon structure functions considering regge behaviour.  
λS and  λNS are regge intercepts for singlet and non-singlet 
structure functions and T0 is a numerical parameter. 
      It is observed that result is sensitive to arbitrary 
parameters k, a, b, c, d and λS, λNS, T0 in t and x-evolutions.  
 
3.(c) Results and Discussion for Characteristic methods      
                  Nature of results [8] of characteristic method for t 
and x- evolution of structure functions is same with the 
results of particular solutions and agreement of the result 
with experimental data and global parameterization is 
good. In all the result from experimental as well as global 
fits, it is seen that structure functions increases when x 
decreases and Q2 increases for fixed values of Q2 and x 
respectively.  But the results of t and x- evolution of 
structure functions are not unique which depend on 
parameters K(x) in LO and K(x) and T0 in NLO.  
    Here also taking some simple standard functional forms 
of K(x) which are same with the particular solutions i.e., 
K(x)= k, axb, and cedx.  T0 is a numerical parameter. 
      It is observed that result is sensitive to arbitrary 
parameters k, a, b, c, d and T0 in t and x-evolutions.  
                 

Comparison of evolution results 
        The evolution results are discussed in section-3(a) for 
the particular, unique and approximate methods. Particular 
and unique solutions of singlet and non-singlet structure 
functions at low-x are obtain using by Taylor’s expansion 
method from GLDAP evolution equations and derive t-
evolution for deuteron, proton, neutron and difference of 
proton and neutron structure functions and x-evolutions of 
deuteron structure functions and compare them with global 
data and parameterizations with satisfactory 
phenomenological success. Particular solutions of DGLAP 
evolution equations in LO and NLO obtained by that 
methodology were not unique and so the t- evolutions of 
deuteron, proton and neutron structure functions, and x- 
evolution of deuteron structure function obtained by this 
methodology were not unique. Thus by this methodology, 
instead of having a single solution we arrive a band of 
solutions, of course the range for these solutions is 
reasonably narrow.  
       In case of unique solutions, it has been observed that 
though we have derived a unique t-evolution for deuteron, 
proton, neutron, difference and ratio of proton and neutron 
structure functions in LO and NLO, yet we can not 
establish a completely unique x-evolution for deuteron 
structure function in LO and NLO due to the relation K(x) 
between singlet and gluon structure functions and an 
adhoc parameter T0 in NLO. This parameter does not effect 
in the results of t- evolution of structure functions. K(x) may 
be in the forms of a constant, an exponential function or a 
power function and they can equally produce required x-
distribution of deuteron structure functions. But unlike 
many parameter arbitrary input x-distribution functions 
generally used in the literature, these methods require only 
one or two such parameters. Unique solutions are obtain 
using by boundary condition, structure function F2= 0 at x 
=1. Unique and approximate solutions of t and x-evolution 
for structure functions are same with particular solutions 
for y maximum (y = ∞) in β = αy relation in LO and NLO.  In 
all the result from experimental as well as global fits, it is 
seen that deuteron structure functions increases when x 
decreases and Q2 increases for fixed values of Q2 and x 
respectively, and proton, neutron, difference of proton and 
neutron structure functions increases when Q2  increases for 
fixed value of x.   
             It is to be noted that the determination of x-
evolutions of proton and neutron structure functions like 
that of deuteron structure function is not suitable by this 
methodology; because to extract the x-evolution of proton 
and neutron structure functions, two separate singlet input 
function F2S(x0, t) and non-singlet input functions F2NS(x0, t) 
are needed from the data points to extract the x-evolutions 
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of the proton and neutron structure functions, which may 
contain large errors.  
         The evolution results are discussed in section-3(b) for 
the Regge behavior of structure functions. DGLAP 
evolution equations in LO and NLO have solved by 
considering Regge behavior of singlet and non-singlet 
structure functions at low-x and derive t and x-evolutions 
of various structure functions. It has been observed that t 
and x-evolutions for deuteron,  proton and neutron 
structure functions in LO and NLO are not unique due to 
the relation K(x) between singlet and gluon structure 
functions, Regge intercept λS, λNS and an adhoc parameter 
T0 in NLO. Where λS and λNS are the Regge intercepts for 
singlet and non-singlet structure functions respectively.  
K(x) may be in the forms of a constant, an exponential 
function or a power function and they can equally produce 
required t and x-distribution of proton and deuteron 
structure functions. Explicit form of K(x) can actually be 
obtained only by solving coupled DGLAP evolution 
equations for singlet and gluon structure functions 
considering regge behaviuor of structure functions [13]. On 
the other hand, we observed that the Taylor expansion 
method can not be used to solve DGLAP evolution 
equations considering regge behavior of structure 
functions.  In all the result from experimental as well as 
global fits, it is seen that deuteron and proton structure 
functions increases when x decreases and Q2 increases for 
fixed values of Q2 and x respectively.    
        The evolution results are discussed in section-3(c) for 
the characteristic method. The solutions of singlet and non-
singlet structure functions at low-x are obtained by using 
method of characteristic from GLDAP evolution equations 
and derive t and x-evolutions of deuteron structure 
functions. It has been observed that t and x-evolution for 
deuteron structure functions in LO and NLO are not 
unique due to the relation K(x) between singlet and gluon 
structure functions and an adhoc parameter T0 in NLO. 
K(x) may be in the forms of a constant, an exponential 
function or a power function and they can equally produce 
required t and x-distribution of deuteron structure 
functions. In this method, boundary condition F2S(S, τ) = F2S 

(τ); t = t0, x = τ  at S = 0 is used to obtain the solution.  On 
the other hand, we observed that the Taylor expansion 
method can be used to solve DGLAP evolution equations in 
this method.  In all the result from experimental as well as 
global fits, it is seen that deuteron and proton structure 
functions increases when x decreases and Q2 increases for 
fixed values of Q2 and x respectively.    
         It is to be noted that the determination of t and x-
evolutions of proton and neutron structure functions like 
that of deuteron structure function is not suitable by this 
methodology; because to extract the t and x-evolution of 

proton and neutron structure functions, two separate 
singlet input function F2S(x0, t) and non-singlet input 
functions F2NS(x0, t) are needed from the data points to 
extract the x-evolutions of the proton and neutron structure 
functions, which may contain large errors.  
         Comparisons of these methods are summarized in 
Table-1. 

Table-1 
Summary of Comparisons of these evolution methods. 

Method Advantage and Disadvantage 
Particular 1. Taylor expansion method can be used to    

     solve DGLAP evolution equations. 
2. Particular solutions of DGLAP evolution   
    equations are not unique. We arrive at a  
     band of solutions, of course the range   
    for these solutions is reasonably narrow.  
3.  For x-evolutions of deuteron structure   
     function, results for y = 2 and y   
      maximum (y = ∞) in β = αy relation do   
      not have any significant difference.  
4. The determination of x-evolutions of   
    proton and neutron structure functions  
    is not suitable by this methodology.  
5. For possible solutions of DGLAP  
    evolution equations in NLO, we  
    introduce an adhoc numerical parameter  
    T0, which does not effect the results of t- 
    evolution of structure functions. 
6. Explicit form of K(x) can not be obtained  
    by solving coupled DGLAP evolution  
    equations for singlet and gluon structure  
     functions by this methodology. 
7. In this method, boundary condition is  
    not used to solve the DGLAP evolution  
    equations. 

Unique 1. Taylor expansion method can be used to  
    solve DGLAP evolution equations. 
2. t-evolution of structure functions in LO   
    and NLO are unique, but x- evolution   
     for deuteron structure functions in LO   
    and NLO are not unique due to the   
    relation K(x) between singlet and gluon  
    structure functions and an adhoc 
parameter T0 in NLO. 
3. Unique solutions of DGLAP evolution  
    equations are same with the particular  
    solutions for maximum y (y = ∞) in β = αy  
    relation.  
4. The determination of x-evolutions of 
proton and neutron structure functions is 
not suitable by this methodology.  
5. For possible solutions of DGLAP 
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evolution equations in NLO, we introduce 
an adhoc numerical parameter T0, which 
does not effect the results of t-evolution of  
    structure functions. 
6. Explicit form of K(x) can not be obtained 
by solving coupled DGLAP evolution  
    equations for singlet and gluon structure 
functions by this methodology. 
7. Boundary condition [F2= 0 at x =1] is 
used to solve the DGLAP evolution     
equations.  

Approximate 1.   Same with unique solutions up to no.6. 
2. Boundary condition is not used to solve  
    the DGLAP evolution equations. 

Regge 1. Taylor expansion method can not be 
used to solve DGLAP evolution equations. 
2.  t and x-evolution of different structure 
functions in LO and NLO are not unique  
    due to the relation K(x) between singlet 
and gluon structure functions, Regge  
     intercepts λS, λNS  and an adhoc 
parameter T0 in NLO. 
3. The determination of x-evolutions of 
deuteron, proton and neutron structure  
    functions is suitable by this 
methodology.  
4. For possible solutions of DGLAP 
evolution equations in NLO, we introduce 
an adhoc numerical parameter T0, which 
effects the results of t and x-evolution of  
    structure functions. 
5. Explicit form of K(x) can be obtained by 
solving coupled DGLAP evolution     
equations for singlet and gluon structure 
functions considering regge behaviour of   
    structure functions. 
6. Boundary condition is not used to solve 
the DGLAP evolution equations. 

Characteristic 
method 

1. Taylor expansion method can be used to 
solve DGLAP evolution equations. 
2.  t and x-evolution for deuteron structure 
functions in LO and NLO are not unique  
    due to the relation K(x) between singlet 
and gluon structure functions and an 
adhoc  parameter T0 in NLO. 
3. The determinations of t and x-evolutions 
of proton and neutron structure functions  
    are not suitable by this methodology.  
4. For possible solutions of DGLAP 
evolution equations in NLO, we introduce 
an  adhoc numerical parameter T0, which 
effects the results of t and x-evolution of  

     structure functions. 
5. Explicit form of K(x) can not be obtained 
by solving coupled DGLAP evolution  
    equations for singlet and gluon structure 
functions by this methodology.  
7. Boundary condition [F2S(S, τ) = F2S (τ); t 
= t0, x = τ  at S = 0.] is used to solve the  
    DGLAP evolution equations. 
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